Introducing HPGR Crushers into a Russian Magnetite Operation

B C Povey (Mineralconsult Pty Ltd) V Nol (SGOK Tech Director – deceased) K.Lagutin (NLMK Tech Director) M.Mryasov (SGOK Project Manager)

Stoylenski GOK

- Based at Stary Oskol in Belgorod region 600km S of Moscow
- A fully owned subsidiary of NLMK now Russia's largest steel maker partly based at Novolipetsk.
- SGOK process 32Mtpa of ore producing 14Mtpa of magnetite concentrate at 66.5%Fe

Plans

- Original plan 32Mtpa to 42Mtpa by building new 4 railway tracks to double primary crushers, new secondary/tertiary building and line 5.
 Estimated at \$US400m – everything had a standby.
- Estimated that existing primary crushers and rails tracks could reach 52Mtpa – changed concepts
 - HPGR being installed as a cheap +5Mtpa expansion (15%) approx. \$US80m
 - Currently doing a BFS on another +5Mtpa project +\$US100m
 - PFS/Scoping Line 5 \$200m using either AG mills or tertiary HPGRS and bigger mills +10Mtpa
 - Ie we reach 52Mtpa for the original \$400m

An Impressive Pit Limestone on the top – feeds a cement plant Hematite for 2Mtpa Magnetite for 42Mtpa

Current Circuit Design Lines 1-3

Current Design Line 4 – 5 mills plus Derricks 2+2+1

Introducing HPGR - Based on Classic Bond/Rowlands

- W = 10*Wi $(1/\sqrt{P_{80}} 1/\sqrt{F_{80}}) * Ef1 * Ef2 * Ef3 * Ef4 * Ef5 * Ef6 * Ef7*Ef8$
- The HPGR
 - affects the Bond Wi
 - The feed size F₈₀
 - The oversized feed factor Ef4
- A fourth impact a feature of magnetite plants is that as a stage product is ground finer that this reduces the tonnage to the next stage of grinding.

Potential benefits - Weakening the crystals

Table 1 Adjusting the data for a common feed size	
---	--

		Improvement just	Measured	
		due to feed size	improvement	Gain due to HPGR
SG01 Coarse ore		changes	HPGR Test	weakening
	Feed			
	Feed after HPGR	2%	34.9%	32.6%
SG02 current	Feed			
	Feed after HPGR	11%	30.1%	19.5%

Benefit in the laboratory was more than 19% For design purposes we used 10%

(Coarse ore SG01 was -32mm and SG02 was current ore at -16mm – 80%-11mm)

Potential Benefits of HPGR – reducing feed size

Impact of Each Change

							P80
			KW	% Change	Benefit	Cumul	Micron
tph	945	As Is (grinds to 280 micron	7300				280
		Size to 6.0mm	6797	93%	7%	93%	
		Improved BM efficiency	6240	92%	8%	85%	
		Microcracking	5436	87%	9%	74%	
tph	1068	New Tonnage +13%	6144	113%	-10%	84%	
		New Product (208 micron)	7296	119%	-16%	100%	208
Tonnage	113%						

Another model determines how the rest of the plant operates – and ends up at 13% tonnage But first stage has to produce at finer product size so the rest of the plant has capacity

Installation

- Originally two machines for the whole plant – 4500tph!
- Suggestion that Line 1 and 4 had an unused dry magnetic section (DMS) could that be used. Implied we would have 8 machines
- Height of the 1.5 x 1.0 HPGR and chutes (one in front of each primary mill) was roughly the space of the DMS unit

Design (1)

- Conveyors at 18 to 20 degrees
 - Used Ribbed conveyor
 - Ore is very dry (<1.5%) so quite clean
- No room in the existing building for either a recycle system or a classification system so design is single pass
- Russians not convinced that you can dry screen at 8mm so even lines 2 an 3 are a single pass system (no building restraint). They didn't like edge splitting due to wear issues, and unclassified recycle was too radical!!!

Design 2

- Needed a common machine size though line 4 is 20% higher production than 1-3
- Sized for line 4 and with a 20% conservative design factor meant the normal machine for 1-3 running at 60% of full speed
- Mdot machine productivity was 450ts/hm³ while design was 320.
- Meant that the machines were running at <50% of normal speed and the VSDs overheated.
- Eventually had to change the gear boxes to speed up the motors a recirculating load would have avoided this.

Start up Issues

- Poor appreciation of the time for electrical installation (v mechanical installation). Client used four different electrical contractors for four machines – they are all different!!!
- Different cable size standards 120mm (Russian) v 180mm (Europe) needed extra cables into motor junction box which was not designed for them

6 cables needed!

Screwed

Worley Parsons/PGP/Mineralconsult Pty Ltd

Welded

Commissioning – no pressure

- Present at the hot commissioning:
 - President NLMK
 - Tech Director NLMK
 - GM SGOK
 - Tech Director SGOK
 - About 20 others

- Camera crew, interviewer -- appeared on You Tube the next day
- Lasted five minutes a hatch fell open and what can you see from 4 m away
- On second run most obvious sign was drop in recirculating load at the mills

Results

- Simple tests on measuring the product size showed the size was 1mm coarser than laboratory – which was a size in the contract.
- Possibly due to change in ore types
- Impact on the mill product sizes was very hard to measure – grab samples were the order of the day

Can you sample this?

- Tried line sampling but no consistency.
- How do you increase recirculating load

 add water or decrease water?

Monthly results – the month of May

Comparing line 1 to lines 2 and 3 – using their normal controls – fixed Fe grade in product adjusted by changing tonnage

		Extra %-45micron -			
		Extra tph relative	relative to #2 and	Tonnage for	
	Days	to lines 2/3	#3	Same Grind	Benefit
Days of both HPGR (>20hours)	14	55	0.80	71.2	8%
Days of one HPGR	7	39	0.30	45.5	5%
Days no HPGR	10	9	-0.22	4.3	0%

BUT THE ORE CHANGED FOR 10DAYS!!!??? - The days of normal ore are shown below

		Extra %-45micron -			
		Extra tph relative	relative to #2 and	Tonnage for	
	Days	to lines 2/3	#3	Same Grind	Benefit
Days of both HPGR (>20hours)	5	84	1.20	108.6	12%
(outside 17th to 27th)					

On - Off Testing – 4 hours on, 4 hours off

Adjusted to give the same product grind OFFICIAL RESULTS!!!

		Mill Line 1 - 1%	6-45u is 10tph	Mill Line 4 - 1%-45u is 30tph	
		Aver. for 4 h	Aver. for 6 h	Average for 4 hours	Average for 4 hours
		With HPGR	Without HPGR	With HPGR	Without HPGR
Actual mill production	t/hr	572.5	487.5	690	465
Increase in Mill Capacity	%		17.40%		48.39%
% -45µ in the concentrate	%	72.7	74.88	77.65	82.55
Adjusted capacity - constant grind	t/hr	572.5	510	690	612.1
Increase in Production	%		12.25%		12.73%
Specific energy consumption	kWh/t	36.1	37.61	37.68	39.94
Increase in SE consumption	kWh/t		1.51		2.25

A 12 – 13% tonnage benefit for the same product grind. This result was the official result – signed by everyone!

Finally comprehensive sampling – over 6 weeks

- Managed to persuade the client to undertake variability of ore sampling – for the future projects
- Designed to measure the true change in Bond WI of the ore by the HPGR – measuring the field Bond WI

	Actual Impact on the Mill Line								
			No HPGR	HPGR	%Change				
	Feed Rate	TPH	866	1040	20%				
\mathbf{a}	Field Bond WI	kWh/t	11.5	9.1	-21%				
e	Stage Feed 80% passing	mm	10.0	7.0					
Ś	Stage Grind 80% passing	micron	176	153					
`									
	Total power/t feed (mill								
	and HPGR)	kWh/t	9.02	8.04					

Conclusion

- Ultimately successful with results better than expected
- Lines 2 and 3 now being upgraded with HPGR
- The target 37Mtpa will be achieved
- Now for 42Mtpa and the HPGRs have the capacity

Recommendations

- The restricted ability of VSDs to adjust speed create issues with the uncertainty of:
 - Mdot
 - Design allowances
- I would recommend a recycle system preferably screened but random recycle or edge recycle would allow full capacity of the HPGR to be used – regardless of design issues.
- I would confidently recommend HPGRs for the quaternary retrofit application

Thanks to SGOK and NLMK for permission to publish this paper – and give me the challenge of introducing new technology – and a role in a You Tube video – my smooth English accent swamped by the Russian translation.

Thanks to Worley Parsons for their support and project management

Originally presented at MetPlant 2017

